Преобразование, кодировка и передача информации
Семёнов Ю.А. (ГНЦ ИТЭФ), book.itep.ru
Для передачи информации на большие расстояния в настоящее время используются исключительно электромагнитные волны (акустические волны пригодны лишь для ограниченных расстояний). При этом пересылка может осуществляться по медным проводам, оптоволоконному кабелю или непосредственно, по схеме передатчик-приемник. В последнем случае используются антенны. Для того чтобы антенна была эффективна, ее размеры должны быть сравнимы с длиной передаваемой волны. Чем шире динамический диапазон передаваемых частот, тем труднее сделать антенну, пригодную для решения этой задачи. Именно по этой причине для передачи используются частоты, начиная с многих сотен килогерц и выше (длина волн сотни метров и меньше). Передача сигнала непосредственно по лучу лазера ограничена расстояниями 100-3000м и становится неустойчивой при наличии осадков даже для инфракрасных длин волн. Между тем человек воспринимает акустические колебания в диапазоне 20-12000 Гц и для целей пересылки звука (например, телефония) требуется именно этот диапазон частот. Динамический диапазон частот в этом случае равен 600, а для высококачественного воспроизведения звука он в два раза шире. При решении этой проблемы используется преобразование частот и различные методы модуляции. Так тот же частотный диапазон, лежащий в пределах (100 - 100,012) Мгц, соответствует динамическому диапазону 0,012%, что позволяет сделать компактную антенну и упростить частотное выделение сигнала.
Для преобразования частот используется перемножение сигналов. Пусть мы имеем два синусоидальных сигнала: A1*sin(w1 t) и A2*sin( w2t). Из тригонометрии известно, что:
A1*sin( w1t)*A2*sin( w2 t)=1/2*A1*A2*[sin( w1+w2)t + sin( w1-w2)t]. [1.1]
Это означает, что в результате перемножения вместо двух частот f1=w1/2p и f2= w2/2p мы имеем две новые частоты (w1+w2)/2p и (w1-w2)/2p с амплитудой 1/2*A1*A2. Если входной сигнал имеет полосу 0 - fм, то после перемножения с сигналом, имеющим частоту fн (несущая частота), получим сигнал с полосой в интервале от (fн - fм) до (fн+ fм).
Это преобразование проиллюстрировано на рис. 2.1. (по вертикальной оси отложена спектральная плотность сигнала f(jw )). На практике это преобразование выполняется с помощью смесителей или гетеродинов, частота fн называется сигналом гетеродина или несущей.
Рис. 2.1. Частотное преобразование
Получение исходного сигнала из преобразованного достигается путем обратного преобразования, которое сводится к умножению полученного сигнала на sin(wнt), где wн = 2 p*fн. При таком обратном преобразовании мы получим сигнал с исходным частотным диапазоном. Помимо этого будет получен сигнал с полосой от (2fн - fм) до (2fн+ fм). Так как fн обычно много больше fм, серьезных проблем это не вызывает - достаточно воспользоваться соответствующим фильтром. Этому методу обратного преобразования присущи некоторые недостатки. Если сигнал fн имеет фазовый сдвиг q по отношению к тому, что имел сигнал, использованный при прямом преобразовании, то амплитуда выходного сигнала будет пропорциональна cosq. Понятно, что при вариации фазы амплитуда будет меняться, а при q=p/2 станет нулевой. По этой причине должны быть предприняты специальные меры для синхронизации этих сигналов (fн. передатчика и fн приемника).
Соотношение [1.1] используется при реализации амплитудной, частотной или фазовой модуляции. Так в случае амплитудной модуляции при временной вариации A1 (=Авх) будет изменяться и амплитуда выходного сигнала (А2=Aн - амплитуда несущей частоты при этом остается постоянной; w1=w н при этом может также варьироваться). Форма сигнала на выходе такого преобразователя имеет вид: Авых = Ан[1+Авх(t)] sin wнt. Для получения формы исходного сигнала на принимающей стороне используется схема детектора (например, диодного), на выходе которого получается сигнал, пропорциональный модулю огибающей функции входного сигнала. Существуют и другие методы демодуляции амплитудно-модулированного сигнала. Главным недостатком метода амплитудной модуляции является возможность нелинейных искажений из-за перемодуляции (когда амплитуда модулирующего сигнала слишком велика).
При частотной и фазовой модуляции амплитуда передаваемого сигнала остается почти постоянной, что исключает нелинейные искажения, связанные с широким динамическим амплитудным диапазоном. Выходной сигнал для этого вида модуляции имеет вид: Авых = Ан sin[wнt + q(t)], где q(t) зависит от формы преобразуемого входного сигнала. Часто используется комбинация амплитудной и фазовой модуляции, которая носит название квадратурной модуляции.
Системы передачи данных с амплитудной или частотной модуляцией являются аналоговыми системами и по этой причине весьма чувствительны к шумам на входе приемника. Применение цифровых методов пересылки информации увеличивает вероятность корректной доставки. Если для аналоговой передачи требуется отношение сигнал/шум на уровне 40-60 дБ, то при цифровой передаче достаточно 10-12 дБ. Выбор типа модуляции зависит от стоящей задачи и от характеристик канала (полосы пропускания, ослабления сигнала и т.д.). Частотная модуляция менее чувствительна к амплитудным флуктуациям сигнала. Ослабление сигнала может варьироваться во времени из-за изменений в транспортной среде, это довольно типично для коммутируемых телефонных сетей. В сетях, использующих выделенные каналы, это также возможно благодаря применению динамических протоколов маршрутизации, когда длина пути может изменяться в пределах одного сеанса связи. В любом случае на передающей стороне необходим модулятор, а на принимающей демодулятор. Так как обмен обычно двунаправлен, эти устройства объединяются в одном приборе, который называется модемом (см. также раздел “4.3.7. ").
В модемах применимы несколько видов модуляции:
FSK | (Frequency Shift Keying) - ступенчатое переключение частоты синусоидального сигнала от f1 к f2 при неизменной амплитуде, частоте f1 ставится в соответствие логический нуль, а f2 - логическая единица. |
BPSK | (Binary Phase-Shift Keying) - скачкообразное переключение фазы синусоидального сигнала на p при неизменной амплитуде, при этом фазе 0 ставится в соответствие логический нуль, а p- логическая единица. |
DPSK | (Differential Phase Shift Keying) - метод, при котором изменяется фаза несущей частоты при постоянной амплитуде и частоте. Разновидность PSK, при которой кодируется лишь изменение сигнала. |
QAM | (Quadrature Amplitude Modulation) - комбинация амплитудной и фазовой модуляции, позволяет осуществить кодирование 8 бит на бод. |
QPSK | (Quadrature Phase-Shift Keying) - квадратурная фазовая модуляция. Использует 4 фиксированных значения фазы 0, p/2, p и 3p/2. Требует в два раза более узкую полосу, чем PSK, и по этой причине весьма популярна. |
TCM | (Trellis Coded Modulation) - метод предполагает использование избыточности, каждый бод несет дополнительный бит, который позволяет более точно восстановить информационную битовую последовательность. При кодировании сигнала используется метод QAM. Метод реализован в современных высокоскоростных модемах и позволяет снизить требования к отношению сигнал/шум на 4-5 дБ. |
Рис. 2.2. QAM-модуляция с 3 битами на бод (слева) и 4 битами на бод (справа)